Rabu, 09 September 2009

Lyric One Last Breath from Creed

This is lyric of One Last Breath from Creed



Please come now I think I’m falling
I’m holding to all I think is safe
It seems I found the road to nowhere
And I’m trying to escape
I yelled back when I heard thunder
But I’m down to one last breath
And with it let me say
Let me say
Hold me now
I’m six feet from the edge and I’m thinking
That maybe six feet
Ain’t so far down
I’m looking down now that it’s over
Reflecting on all of my mistakes
I thought I found the road to somewhere
Somewhere in His grace
I cried out heaven save me
But I’m down to one last breath
And with it let me say
Let me say
Hold me now
I’m six feet from the edge and I’m thinking
That maybe six feet
Ain’t so far down
Sad eyes follow me
But I still believe there’s something left for me
So please come stay with me
’Cause I still believe there’s something left for you and me
For you and me
For you and me
Hold me now
I’m six feet from the edge and I’m thinking


Next...

Someday Lyrics - MLTR (Michael Learns To Rock)

this lyric is Michael Learns To Rock with Someday



In my search for freedom
and peace of mind
I’ve left the memories behind
Wanna start a new life
but it seems to be rather absurd
when I know the truth
is that I always think of you

Chorus:
Someday someway
together we will be baby
I will take and you will take your time
We’ll wait for our fate
cos’ nobody owns us baby
We can shake we can shake the rock
Try to throw the picture out of my mind
try to leave the memories behind
Here by the ocean
wave’s carry voices from you
Do you know the truth
I am thinking of you too

Chorus:
Someday someway
together we will be baby…
The love we had together
just fades away in time
And now you’ve got your own world
and I guess I’ve got mine
But the passion that you planted
in the middle of my heart
is a passion that will never stop




Next...

Hotel California Lyrics - Eagles

Hi guys..if you needs many lyrics from many artits in the world. this lyrics is one of them. Eagles with Hotel California



On a dark desert highway, cool wind in my hair
Warm smell of colitas, rising up through the air
Up ahead in the distance, I saw shimmering light
My head grew heavy and my sight grew dim
I had to stop for the night
There she stood in the doorway;
I heard the mission bell
And I was thinking to myself,
’This could be Heaven or this could be Hell’
Then she lit up a candle and she showed me the way
There were voices down the corridor,
I thought I heard them say…
Welcome to the Hotel California
Such a lovely place (Such a lovely place)
Such a lovely face
Plenty of room at the Hotel California
Any time of year (Any time of year)
You can find it here
Her mind is Tiffany-twisted, she got the Mercedes Benz
She got a lot of pretty, pretty boys she calls friends
How they dance in the courtyard, sweet summer sweat.
Some dance to remember, some dance to forget
So I called up the Captain,
’Please bring me my wine’
He said, ’We haven’t had that spirit here since nineteen sixty nine’
And still those voices are calling from far away,
Wake you up in the middle of the night
Just to hear them say…
Welcome to the Hotel California
Such a lovely place (Such a lovely place)
Such a lovely face
They livin’ it up at the Hotel California
What a nice surprise (what a nice surprise)
Bring your alibis
Mirrors on the ceiling,
The pink champagne on ice
And she said ’We are all just prisoners here, of our own device’
And in the master’s chambers,
They gathered for the feast
They stab it with their steely knives,
But they just can’t kill the beast
Last thing I remember, I was
Running for the door
I had to find the passage back
To the place I was before
’Relax,’ said the night man,
’We are programmed to receive.
You can check-out any time you like,
But you can never leave!’



Next...

Senin, 07 September 2009

Varicap and Phase Modulator, and Foster-Seeley (Balanced) Discriminator

Langsung aje ye..ane kasih sedikiiiiiiiiit lg bahasan tentang title diatas.(btw kok dr kemaren sdikit terus ya?huehehe)..

Merdeka!



Varicap modulator

Pada level frekuensi tinggi, adalah normal jika sebuah bentuk modulasi amplitudo menumpuk ke tampilan modulasi frekuensi. Hal ini terjadi akibat rangkaian modulator dibuat untuk menyediakan deviasi frekuensi dari keadaan relevan. Keuntungan dari penggunaan sebuah gelombang rectangular dibandingkan sinus adalah bahwa gelombang ini akan menampilkan hasil yang lebih baik pada osiloskop.

Modulator Phase

Secara normal, phase modulator yang digunakan pada praktikum dibentuk dan diatur untuk menghasilkan variasi fase. Dengan linieritas tinggi, phase modulator pada panel DL2501, akan berfungsi sama, sehingga menghasilkan deviasi yang berharga dan mudah untuk diukur.

Foster-Seeley (Balanced) Discriminator

Foster-Seeley (Balanced) Discriminator mendapatkan kembali tegangan modulasi dari modulasi frekuensi dengan menggunakan pergeseran sudut fasa antara tegangan – tegangan primer dan sekunder, dan suatu transformator yang ditala. Sudut fasa ini adalah fungsi dari frekuensi, dan dengan mengaturnya maka komponen-komponen jumlah phasor dan selisih phasor dari tegangan-tegangan primer dan sekunder dimasukkan kedua buah detektor selubung yang keluarannya kemudian digabungkan sehingga demodulasi telah diperoleh.
Karena tergantung pada variasi sudut fasa, karenanya rangkaian ini dikenal sebagai diskrominator fasa meskipun rangkaian ini tidak mendeteksi modulasi fasa secara langsung, namun rangkaian ini mengubah suatu frekuensin yang sebenarnya atau yang ekivalen menjadi suatu variasi sudut fase rangkaian yang nantinya diubah pula menjadi suatu variasi amplitudo. Lengkung karakteristik dan diskriminator dapat diperoleh dari tegangan keluaran yang dibandingkan dengan deviasi frekuensi.


Next...

Modulasi Kolektor, Half Wave dan Full Wave Demodulator

Hadirin yang berbahagia. Selamat berjumpa dengan saya di acara....(we'e'e'e. kyk pertemuan apaa gt..he2)

Gni prend. ni ada sedikit bahasan tentang judul diatas. sedikiiiiiiiit...bgt. tp smoga bs bantu sampeyan semua baik lahir maupun batin (kyk lebaran aj).

Sukses Bro!



Modulasi Kolektor dan Lissajous

Frekuensi rendah (fm) selalu lebih kecil daripada frekuensi frekuensi pembawa (fc) dalam modulasi amplitudo. Dalam rangkaian yang dilakukan pada praktikum Elkom, bahwa fc merupakan masukna ke penguat tunggal emitor dengan tegangan setinggi Vc. fm merupakan komponen dari tegangan muka DC, yaitu Vm. Vm mengubah arus kolektor Ic. Tegangan masukan Vc dan Vm perlu memenuhi syarat :
•Tidak boleh berpengaruh pada penguatan tegangan
•Hanya Vm yang boleh berpengaruh pada penguatan tegangan. Oleh karena itu operasinya harus berupa operasi sinyal kecil bagian fc dan operasi sinyal besar bagian fm.

Half Wave Demodulator
Pada jenis demodulator ini, informasi pemodulasi terkandung dalam selubung dari gelombang yang dimodulasikan dapat ditampilkan kembali dengan menyearahkan gelombang dengan sistem detektor, yaitu demodulator. Karena menggunakan half wave demodulator, gelombang yang disearahkan hanaya sebagaian saja, sehingga terbentuk gelombang sinus yang terpotong di siklus negatifnya. Nilai frekuensi dari sinyal demodulasi sama dengan sinyal pemodulasi (fm).

Full Wave Demodulator

Karena yang dimodulasi adalah sinyal pada kolektor, maka informasi pemodulasi yang terkandung dalam selubung dari gelombang yang dimodulasikan adalah gelombang sinyal pada kolektor dan informasi ini di demodulasi dengan penyearah gelombang penuh. Sehingga hasilnya
diperoleh sinyal sinus sempurna tidak terpotong dengan nilai amplitudo hampir sama dengan amplitudo selubung.


Next...

Kamis, 03 September 2009

Soal-Jawab Transmisi Telekomunikasi

Rekan-rekan, ni kite kasih beberapa soal n jawabannye sekalian. Isinya ya about transmisi telekomunikasi. InsyaAlloh berguna bwt rekan2 temuanya.Amin..Sukses bro!(btw, plis comment ni posting ya.he2.sp tw kite bs sharing lg.jgn lp click 'Follow us' and meet my invite.ha2)



1.Perbedaan line coding dan channel coding dengan beberapa contoh
Line coding : jenis pengkodean sinyal digital yang terdiri dari 2 kategori, yaitu unipolar dan bipolar. Contoh :
NRZ : bit 1 polaritas (+), bit 0 komponen dc, perubahan pada 1 perioda clock
RZ : bit 1, ½ periode clock (+), (-) bergantian, sedangkan bit 0 nya tidak ada
sinyal
AMI : pada frek 0, komponen dc, sedangkan bit 1 bergantian polar (+) dan (-)
HDB3 : jika ada runtun bit 0 berturut-turut 3 kali
B6ZS : bit 0, enam berturut-turut baru dilakukan violasi
CMI : bit 1 direpresentasikan (+) dan (-) state.
Channel coding : merupakan error control, dimana data yang ditransmisikan ditambah algoritma sehingga menambah runtun bit yang panjang. Contoh :

Sandi blok : sederetan pesan bit ditambahkan bit check pada encoding sehingga runtun bit message menjadi lebih panjang. Bit check ini yang digunakan untuk mendeteksi dan memperbaiki galat.
Convolution code : informasi yang meninggalkan encoder tergantung pada blok bit pesan dan blok bit pesan sebelumnya. Proses ini dilakukan oleh shift register dan adder. Menggunakan algoritma : viterbi.
Concanated code : teknik gabungan sandi konvolusi dan sandi blok yang terdiri dari dua decoder dan dua encoder, sepasang berguna untuk membersihkan noise gaussian dan sepasang yang lain untuk burst noise.

2.Bandingkan kelebihan dan kekurangan antara dua teknik kendali galat
FEC (Forward Error Correction)

Kelebihan :
•Menggunakan redundancy untuk mendeteksi error dan memperbaiki data
•Digunakan untuk sistem broadcast
•Memperbaiki error secara langsung
•Tidak membutuhkan jalur balik untuk permintaan pentransmisian ulang
Kekurangan :
Mempunyai jalur yang tetap sehingga kualitas data tergantung noise kanal

ARQ (Automatic Request for Repeat)

Kelebihan :
Menggunakan jalur yang terpisah untuk transmisi ulang
Digunakan pada packet switching
Jika dikombinasikan dengan FEC, maka ARQ akan membersihkan error yang tidak terdeteksi oleh FEC.

Kekurangan :
Hanya mendeteksi error secepat mungkin tanpa memperbaikinya
Digunakan pada kanal yang umumnya bebas error

3.Jelaskan cara kerja pseudorandom generator dengan 3 flip-flop

Runtun bit pseudorandom adalah periodic karena keperiodikannya sangat besar yang biasanya lebih dari 1000 bit terjadi sebelum runtun mengulang dirinya sendiri. Keperiodikan tergantung jumlah flip=flop dlm rangkaian n.dengan panjang runtun 2^n–1. Ini dinamakan pembangkit runtun maximal length, jika n = 3, maka runtun bit akan mengulang kembali setelah 7 bit.

4.Jelaskan cara mengatasi pengaruh atmosfer dan keadaan sekitar sistem gelombang mikro

Dapat diatasi dengan cara diversity, yaitu operasi dua atau lebih sistem atau sebagaian sistem yang dimaksudkan untuk memperbaiki kehandalan sistem.
Terdiri dari tiga macam :

Space diversity
Receiver mempunyai dua antena yang ditempatkan terpisah secara vertikal panjang gelombang yang berbeda satu sama lainnya sekitar 200 lambda, dimana sinyal setiap antena diterima, kemudian dihubungkan ke penggabung diversity. Jika ditempatkan terpisah secara horisontal dinamakan Angle diversity dengan sudut elevasi yang berbeda 1 derajat.

Frekuensi diversity
Dua transmitter mengirimkan informasi secara bersamaan pada satu antena yang sama namun dengan frekuensi yan berbeda.

Polarisation diversity
Energi microwave dipancarkan pada polaritas yang berbeda yaitu secara vertikal dan horisontal dari transmitter yang sama, sehingga membutuhkan dua antena dengan polarisasi berbeda (vertikal dan horisontal) baik pada transmitter atau receiver.

5.Bandingkan kedua sumber cahaya LED dan ILD

LED :
Sumber cahaya tidak koheren
Kehandalan lebih tinggi
Rangkaian drive nya lebih sederhana
Sensitivitas terhadap cahaya lebih rendah
Input dc dan output light bersifat linear
Biaya rendah

ILD :
Sumber cahaya lebih koheren
Daya output besar
Bandwidth lebar
Spektrum sempit
Rise time nya lebih cepat

6.Hal-hal apa saja yang perlu diperhatikan dalam instalasi fiber optis
Penyambungan terdiri dari :

Fusion : kedua ujung fiber optik dimasukkan kedalam suatu piranti dimana ujung-ujung fiber optik tersebut haru bersih dan rata, kemudian elektroda diaktifkan sehingga fiber optik meleleh dan tersambung. Karakteristik fiber optik kiri dan kanan harus sama agar tidak menimbulkan atenuasi yang tinggi.

Mekanikal : tidak adanya proses peleburan dimana ujungnya dipotong dengan sudut tegak lurus serta harus bersih dan rata kemudian dimasukkan ke elestomotorik (bentuk selongsongnya kerucut) atau fastomorik (bentuk selongsongnya sama dengan corenya)

7.Struktur fisis fiber optik selengkapnya

Core atau lapisan inti, yaitu pusat yang terbuat dari gelas halus yang menjadi tempat berjalannya cahaya
Cladding atau kulit, yaitu lapisan optik luar yang membungkus core dan memantulkan kembali cahaya yang terpancar keluar.
Buffer (pelindung) atau coating (mantel), yaitu lapisan plastik pelindug serat dari kerusakan dan kelembaban.

8.Jelaskan tentang :

Bit stuffing : penyelipan bit-bit ekstra ke dalam aliran data untuk menghindari kemunculan rangkaian kontrol yang tidak diharapkan.
Bit interleaving : suatu metode yang digunakan dalam multiplexing asinkron untuk keperluan perbandingan dengan sistem sinkron.
Enkripsi : konversi data menjadi bentuk yang tidak mudah dimengerti dengan menggunakan sebuah kode tertentu sedemikian rupa sehingga merekonversikan bentuk yang asli masih bisa dikembalikan.
Low Probability of Detection : teknik pendeteksian spread spectrum yang digunakan sehingga tidak mudah dideteksi adanya lalu lintas pesan atau informasi agar pihak lain sulit menangkap pesan informasi komunikasi yang berlangsung.
Splicing : suatu teknik penyambungan pada fiber optik dengan cara fusion dan mekanik.

9.Hal-hal yang harus diperhatikan dalam teknik pemilihan pengkodean

•Tidak mengandung komponen dc
•Tidak boros BW
•Noise dapat dipulihkan
•Kode harus menyediakan multiplikasi rendah
•Mengekstrak frekuensi clock

10.Mana yang lebih baik antara FH-SS dan DS-SS

Yang lebih baik adalah DS-SS, karena pada akhir penerimaan DS-SS terdapat dua loop feedback, yang satu loop berfungsi untuk mengunci kode fase yang benar, dan satu loop lagi untuk mengikuti carrier dan kesuksesan DS-SS tergantung pesat chip yang lebih besar, sedangkan FH-SS mempunyai kelemahan tidak mampunya frekuensi synthesizer mengubah frekuensi dengan cepat tanpa membangkit sinyal noise yang tidak dikehendaki tetapi receiver tidak perlu fase yang koheren mengenai transmitter yang berada diatas BW spread spectrum yang penuh.

11.Beri penjelasan mengapa 16QAM lebih baik daripada 16PSK

Karena jarak antar simbol pada 16-QAM adalah jauh, sehingga kemungkinan terjadinya interferensi antar simbol adalah kecil, sedangkan pada 16-PSK jarak antar simbolnya dekat.

12.Mengapa PSK lebih efisien terhadap bandwidth

Karena pada PSK bit-bit yang dikirimkan lebih banyak dan PSK dapat dibuat bervariasi dengan tingkat level yang tertentu dimana semakin tinggi tingkat levelnya maka semakin tinggi efisiensi bandwdthnya.

13.Jelaskan PCM 30

Satu multiframe terdiri dari 16 frame berjarak 2 ms, satu frame terdiri dari 32 timeslot berjarak 125 mikroseconds, sedangkan satu time slot terdiri dari 8 bit. Untuk jenis frame genap digunakan mode genap pula (Y 0 0 1 1 0 0 1 1), sedangkan untuk frame ganjil menggunakan mode ganjil ( Y 1 Z X X X X X X ). Inisial Z berarti 1 adalah sukses dan 0 adalah gagal dalam pendeteksian frame, sedangkan Y adalah untuk hubungan internasional atau tertentu. Untuk time slot 0 berfungsi sebagai pensinkronisasian dalam setiap frame, sementara time slot 16 digunakan pensinkron keseluruhan dan pensinyalan.

14.Kelebihan sinyal digital dibanding analog

Mudah dalam pemeliharaan
Konsep ISDN dapat direalisasikan
Tahan terhadap noise
Efisiensi lebih tinggi
Alat yang digunakan lebih kompleks
Dimungkinkan penggabungan sinyal antara video, audio, dan data

15.Karakteristik Fiber optik :

Modal dispersion : dispersi karena mode yang digunakan
Material dispersion : dispersi karena bahan pembuatnya
Waveguide dispersion : dispersi yang disebabkan oleh bentuk dari core

16.Efek Atmosfer

a.Absorption (penyerapan)
Oksigen pada atmosfer menyerap sejumlah energi microwave
Attenuasi bertambah dengan cepat seiring dengan pertambahan kandungan air di atmosfer pada jalur microwave
Attenuasi relatif kecil untuk komunikasi microwave, sekitar 0,01 dB/km pd 2 Ghz

b.Refraksi (pembiasan)
Merupakan pembelokan gelombang radio yang seharusnya berubah pada karakteristik atmosfer
Efek refraksi juga menyebabkan beam microwave menyimpang dari jalur LOS

c.Ducting (lorong)
Biasanya disebabkan oleh ketinggian yang rendah, kepadatan lapisan atmosfer yang tinggi
Sangat sering terjadi di daerah permukaan air yang sangat luas atau pada iklim yang terjadi pembalikan temperatur

17.Efek Terrain

Perambatan energi microwave dipengaruhi oleh obstacle yang ditempatkan pada jalur tersebut. Obstacle yang dimaksud adalah : pepohonan, batu, bangunan.

Reflection (pemantulan)
Jika 2 gelombang sefase maka akan saling memperkuat sinyal dan sebaliknya
Untuk gelombang polarisasi horisontal, beda fase adalah 180 derajat
Untuk gelombang polarisasi vertikal, beda fase adalah 180 derajat

Freznel zone
1st Freznel zone adalah daerah dimana beda fase antara sinyal langsung san sinyal yang dipantulkan daerah tersebut adalah 180 derajat
Pusat lingkaran merupakan jalur LOS yang merupakan batas semua freznel zone

Difraksi
Rugi bayangan (shadow loss) merupakan daerah di belakang obstacle
Merupakan karekteristik GEM yang terjadi saat beamnya melewati obstacle dengan menyerempet

18.Fading
Disebabkan oleh iklim dan permukaan daratan

Flat fading
2 bentuk FF adalah ducting dan rain attenuation fading
Beam microwave disebabkan oleh perubahan indeks bias udara

Freq Selective Fading
Sinyalnya melemah hanya pada frekuensi tertentu

Ada 2 yaitu :
Atmospheris Multipath Fading : jika kondisi atmosfer terbagi dalam lapisan-lapisan dengan kerapatan yang berbeda2, maka terjadi ducting
Ground Reflection Multipath Fading : pantulan dapat disebabkan oleh tangkapan multi lintasan yang diamati sebagai fading jika gel diterima tidak sefase.







Next...

Senin, 31 Agustus 2009

Lissajous

Lissajous - Langsung aje ye..he3, today kita akan mengupas apa itu lissajous (emgnya mangga dikupas.:) mau dunk), kemudian dibahas bagaimana cara menggambar lissajous dan menghitung beda fasenya serta penjelasannya. jadi, jangan kemana-mana ok!

Gambar / Diagram Lissajous definisinya sederhana saja, yaitu adalah sebuah penampakan pada layar osiloskop yang mencitrakan perbedaan atau perbandingan Beda Fase, Frekuensi & Amplitudo dari 2 gelombang inputan pada probe osiloskop.

Sebelum membahas lebih jauh seperti apa pencitraan lissajous itu ada baiknya kita mantabbbkan definisi dari Beda Fase, Frekuensi & Amplitudo itu sendiri, agar dalam pemahaman lissajous nanti tidak mengalami kebingungan dan kesulitan.



Definisi Amplitudo
Adalah nilai puncak / Maksimum positif dari sebuah gelombang sinusoidal. Bila Amplitudo suatu gelombang tertuliskan " 20 " maka nilai keluaran dari gelombang tersebut akan bergerak dari 0 ke 20 ke 0 ke -20 ke 0 dan ke 20 lagi, begitu seterusnya.

Definisi Frekuensi
Adalah suatu pernyataan yang menggambarkan " Berapa banyak gelombang yang terjadi tiap detiknya" dalam satuan Hz. Bila disitu tertulis 25Hz berarti ada 25 gelombang ( 1 gelombang terdiri atas1 Bukit & 1 Lembah ) yang terjadi dalam 1 detik, ini berarti 1 buah gelombang memakan waktu 1/25 detik = 0.04 detik untuk tereksekusi sepenuhnya ( Inilah yang biasa disebut dengan Periode Gelombang = Waktu yang dibutuhkan 1 gelombang untuk tereksekusi seluruhnya ) . Untuk lebih jelasnya lihat gambar dibawah ini:



Domain Y menggambarkan Amplitudo, sedangkan domain X menggambarkan waktu. dari gambar diatas dapat kita ambil kesimpulan bahwa gelombang tersebut memilikiAmplitudo 50, Frekuensi 1 Hz dan Periode 1 Detik. Gambar ke 2:



Nah, sekarang perhatikan gambar gelombang diatas!! 1 bukit & 1 lembah dapat tereksekusi seluruhnya pada waktu 0,2 detik! Berarti apa yang dapat kita simpulkan?? Yup, Gelombang diatas memiliki Periode = 0,2 detik yang berarti, akan ada 5 gelombang yang dapat terselesaikan dalam 1 detiknya, yang berarti gelombang tersebut memilikiFrekuensi sebesar 5 Hz.


Secara singkat frekuensi merupakan kebalikan dari periode demikian pula sebaliknya, 5 Hz = 1 / 0,2 det ||| 0,2 det = 1 / 5 Hz [ Frekuensi = 1 / Periode & Periode = 1 / Frekuensi ]


Definisi Beda Fase
Adalah perbedaan sudut mulai antara 2 gelombang sinusoidal yang sedang diamati. Sederhana bukan?? agar lebih jelas perhatikan ketiga gambar dibawah ini ( Ketiga gelombang dibawah memiliki Frekuensi 1 Hz ) :



Apa perbedaan dari ketiga jenis gelombang sinus diatas?? Yup, sudut dalam memulai besaran nilainya. Jika Gelombang A memulai awalannya dari nilai sudut nol maka, Gel B memulai dari sudut 45 dan Gel. C memulainya dari sudut -90. Jika anda bingung, maka cam kan saja, bila ada gelombang digeser kekiri maka dalam persamaanya akan Di tambahkan sebesar pergeserannya [ Ex : Persamaan Gel. B ], Demikian pula sebaliknya.


Cukup untuk permulaannya, seperti apakah proses menggambar lissajous itu sebenarnya?? Perhatikan gambar dibawah ini:



Inti dari gambar diatas adalah cara menggambar lissajous secara manual, yaitu dimulai dengan:

1. Menggambar 2 gelombang yang akan diperbandingkan kedalam Domain X dan Y ( Lihat Gambar, Gel 1 diletakkan sebagai input Y [ Vertikal ] dan Gel 2 sebagai input X [ Horizontal ] ),
2. Lalu memilah milahnya menjadi bagian bagian, dan jarak antar bagian2 pada masing2 gelombang haruslah sama ( contoh dalam gambar adalah 16 bagian )
3. Dan yang terahir MemPlot masing masing titik dengan pasangannya masing masing. Dengan menggambar garis bantuan ke tengah bidang kertas dan mencari titik potongnya dengan perpanjangan garis bantu dari gelombang yang satunya lagi.
4. Hubungkan titik2 tersebut sesuai urutanya, Selesai.


Dalam kenyataannya hasil gambar lissajous sendiri sangat banyak jenisnya tergantung dari Frekuensi, Beda Fase & Amplitudo kedua gelombang yang diperbandingkan ( Dalam contoh diatas kurva lissajous yang terbentuk terjadi dari 2 gelombang yang memilikiRasio Frekuensi 1 : 2 || Rasio Amplitudo 1 : 1 || Beda Fase = 0 derajat ) . Berikut contoh-contoh dari hasil kuva lissajous yang lain:





Lalu Bagaimana kita mengetahui Beda Fase secara pasti dari lissajous - lissajous diatas??. Dalam beberapa kasus, hanya kurva2 lissajous tertentu sajalah yang dapat dengan mudah diketahui Beda Fase antara 2 gelombang pembentuknya. Lissajous yang seperti apakah itu? ialah lissajous yang 2 gelombang pembentuknya memiliki Frekuensi sama. Ciri cirinya adalah " lissajous yang hanya terdiri dari 1 lingkaran saja ". Lalu bagaimana cara menghitungnya?? mari kita simak gambar dibawah ini:



Itu adalah rumus untuk kuva yang lingkaranya serong ke kanan untuk kurva lissajous yang lingkarannya serong ke kiri, perhatikan gambar dibawah ini:



Bagaimana dengan lissajous - lissajous yang lain?? kita masih dapat menyimpulkan satuhal dari kurva2 lissajous tersebut yaitu perbandingan rasio frekuensi antara 2 gelombang pembentuknya, Caranya:



Perhatikan gambar!! Tarik garis Vertikal dan Horizontal Hitung Perpotongan Garis Merah dengan grafik dan anggap ini sebagai variabel "M". Hitung Perpotongan Garis Biru dengan grafik dan anggap ini sebagai veriabel "N"
Maka Frek X : Frek Y === M : N

Pada Gambar 1 maka Rasio Frekuensi X banding Y adalah :
5 : 4


Bagaimana dengan Gambar lissajous ke 2??
Jelas, bahwa Rasio Frek X banding Y adalah :

2 : 3

Good Luck yaa!! Sampai Jumpa Lagi..!! huehehe..


Next...

Sinyal

Definisi sinyal
Oce rekan2..let’s discuss about SIGNAL (bner gak English-nya?..he3) Disini saya sedikiit memberikan teori pengantar tentang What’s signal? Langsung aj ke main topic yaa..


Sinyal, apaan tuh??! menurut Rec ITU - T G.701 , sinyal adalah suatu gejala fisika dimana satu atau lebih dari karakteristiknya melambangkan informasi.

Jenis-jenis Sinyal
Setelah kita mengetahui tentang apa itu sinyal, lalu ada berapakah jenis sinyal yang ada secara umum?. menurut hakikatnya sinyal terbagi menjadi ke dalam 2 yaitu Sinyal Analog dan Sinyal Diskrit


Sinyal Analog
Jenis sinyal pertama adalah sinyal analog. Apa sih sebenrnya sinyal analog itu?nih diriku kasih buat rekan2 smua..he3.. sinyal analog merupakan suatu sinyal dimana salah satu besaran karakteristiknya mengikuti secara kontinyu perubahan dari besaran fisik lainnya yang melambangkan informasi. Secara fisik sinyal analog berarti selalu mempunyai nilai di sepanjang waktu. Karakteristik (parameter) yang dimiliki oleh sinyal analog antara lain : amplitudo, frekuensi, dan fae.



Sinyal Diskrit
Sebelumnya kita telah tahu apa itu sinyal analog. Lalu kita diskusi tentang sinyal diskrit. Apa ya sinyal diskrit itu?sinyal diskrit merupakan sinyal yang terdiri atas sederetan elemen yang berurutan terhadap waktu, dimana salah satu atau lebih karakteristiknya membawa informasi. Karakteristik dari sinyal diskrit adalah : amplitudo, lebar dan bentuk gelombangnya.



Sinyal Digital

Sinyal digital, sebenarnya apa sih sinyal digital itu?? apa definisi dari sinyal digital?? Sinyal digital adalah sebuah sinyal diskrit dimana informasinya dilambangkan oleh sejumlah deretan sinyal diskrit yang telah ditentukan jumlahnya.



Next...

Minggu, 30 Agustus 2009

Protocol Verification

Realistic protocols and the programs that implement them are often quite complicated. Consequently, much research has been done trying to find formal, mathematical techniques for specifying and verifying protocols. In the following sections we will look at some models and techniques. Although we are looking at them in the context of the data link layer, they are also applicable to other layers.



Finite State Machine Models
A key concept used in many protocol models is the finite state machine. With this technique, each protocol machine (i.e., sender or receiver) is always in a specific state at every instant of time. Its state consists of all the values of its variables, including the program counter.
In most cases, a large number of states can be grouped for purposes of analysis. For example, considering the receiver in protocol 3, we could abstract out from all the possible states two important ones: waiting for frame 0 or waiting for frame 1. All other states can be thought of as transient, just steps on the way to one of the main states. Typically, the states are chosen to be those instants that the protocol machine is waiting for the next event to happen [i.e., executing the procedure call wait(event) in our examples]. At this point the state of the protocol machine is completely determined by the states of its variables. The number of states is then 2n, where n is the number of bits needed to represent all the variables combined.
The state of the complete system is the combination of all the states of the two protocol machines and the channel. The state of the channel is determined by its contents. Using protocol 3 again as an example, the channel has four possible states: a 0 frame or a 1 frame moving from sender to receiver, an acknowledgement frame going the other way, or an empty channel. If we model the sender and receiver as each having two states, the complete system has 16 distinct states.
A word about the channel state is in order. The concept of a frame being ''on the channel'' is an abstraction, of course. What we really mean is that a frame has possibly been received, but not yet processed at the destination. A frame remains ''on the channel'' until the protocol machine executes FromPhysicalLayer and processes it.
From each state, there are zero or more possible transitions to other states. Transitions occur when some event happens. For a protocol machine, a transition might occur when a frame is sent, when a frame arrives, when a timer expires, when an interrupt occurs, etc. For the channel, typical events are insertion of a new frame onto the channel by a protocol machine, delivery of a frame to a protocol machine, or loss of a frame due to noise. Given a complete description of the protocol machines and the channel characteristics, it is possible to draw a directed graph showing all the states as nodes and all the transitions as directed arcs.
One particular state is designated as the initial state. This state corresponds to the description of the system when it starts running, or at some convenient starting place shortly thereafter. From the initial state, some, perhaps all, of the other states can be reached by a sequence of transitions. Using well-known techniques from graph theory (e.g., computing the transitive closure of a graph), it is possible to determine which states are reachable and which are not. This technique is called reachability analysis (Lin et al., 1987). This analysis can be helpful in determining whether a protocol is correct.
Formally, a finite state machine model of a protocol can be regarded as a quadruple (S, M, I, T), where:
•S is the set of states the processes and channel can be in.
•M is the set of frames that can be exchanged over the channel.
•I is the set of initial states of the processes.
•T is the set of transitions between states.
At the beginning of time, all processes are in their initial states. Then events begin to happen, such as frames becoming available for transmission or timers going off. Each event may cause one of the processes or the channel to take an action and switch to a new state. By carefully enumerating each possible successor to each state, one can build the reachability graph and analyze the protocol.
Reachability analysis can be used to detect a variety of errors in the protocol specification. For example, if it is possible for a certain frame to occur in a certain state and the finite state machine does not say what action should be taken, the specification is in error (incompleteness). If there exists a set of states from which no exit can be made and from which no progress can be made (i.e., no correct frames can be received any more), we have another error (deadlock). A less serious error is protocol specification that tells how to handle an event in a state in which the event cannot occur (extraneous transition). Other errors can also be detected.
As an example of a finite state machine model, consider Fig. 1(a). This graph corresponds to protocol 3 as described above: each protocol machine has two states and the channel has four states. A total of 16 states exist, not all of them reachable from the initial one. The unreachable ones are not shown in the figure. Checksum errors are also ignored here for simplicity.

Figure 1. (a) State diagram for protocol 3. (b) Transitions.


Each state is labeled by three characters, SRC, where S is 0 or 1, corresponding to the frame the sender is trying to send; R is also 0 or 1, corresponding to the frame the receiver expects, and C is 0, 1, A, or empty (–), corresponding to the state of the channel. In this example the initial state has been chosen as (000). In other words, the sender has just sent frame 0, the receiver expects frame 0, and frame 0 is currently on the channel.
Nine kinds of transitions are shown in Fig.1. Transition 0 consists of the channel losing its contents. Transition 1 consists of the channel correctly delivering packet 0 to the receiver, with the receiver then changing its state to expect frame 1 and emitting an acknowledgement. Transition 1 also corresponds to the receiver delivering packet 0 to the network layer. The other transitions are listed in Fig.1(b). The arrival of a frame with a checksum error has not been shown because it does not change the state (in protocol 3).
During normal operation, transitions 1, 2, 3, and 4 are repeated in order over and over. In each cycle, two packets are delivered, bringing the sender back to the initial state of trying to send a new frame with sequence number 0. If the channel loses frame 0, it makes a transition from state (000) to state (00–). Eventually, the sender times out (transition 7) and the system moves back to (000). The loss of an acknowledgement is more complicated, requiring two transitions, 7 and 5, or 8 and 6, to repair the damage.
One of the properties that a protocol with a 1-bit sequence number must have is that no matter what sequence of events happens, the receiver never delivers two odd packets without an intervening even packet, and vice versa. From the graph of Fig.1 we see that this requirement can be stated more formally as ''there must not exist any paths from the initial state on which two occurrences of transition 1 occur without an occurrence of transition 3 between them, or vice versa.'' From the figure it can be seen that the protocol is correct in this respect.
A similar requirement is that there not exist any paths on which the sender changes state twice (e.g., from 0 to 1 and back to 0) while the receiver state remains constant. Were such a path to exist, then in the corresponding sequence of events, two frames would be irretrievably lost without the receiver noticing. The packet sequence delivered would have an undetected gap of two packets in it.
Yet another important property of a protocol is the absence of deadlocks. A deadlock is a situation in which the protocol can make no more forward progress (i.e., deliver packets to the network layer) no matter what sequence of events happens. In terms of the graph model, a deadlock is characterized by the existence of a subset of states that is reachable from the initial state and that has two properties:
1.There is no transition out of the subset.
2.There are no transitions in the subset that cause forward progress.
Once in the deadlock situation, the protocol remains there forever. Again, it is easy to see from the graph that protocol 3 does not suffer from deadlocks.
Petri Net Models
The finite state machine is not the only technique for formally specifying protocols. In this section we will describe a completely different technique, the Petri net (Danthine, 1980). A Petri net has four basic elements: places, transitions, arcs, and tokens. A place represents a state which (part of) the system may be in. Figure 2 shows a Petri net with two places, A and B, both shown as circles. The system is currently in state A, indicated by the token (heavy dot) in place A. A transition is indicated by a horizontal or vertical bar. Each transition has zero or more input arcs coming from its input places, and zero or more output arcs, going to its output places.

Figure 2. A Petri net with two places and two transitions.


A transition is enabled if there is at least one input token in each of its input places. Any enabled transition may fire at will, removing one token from each input place and depositing a token in each output place. If the number of input arcs and output arcs differs, tokens will not be conserved. If two or more transitions are enabled, any one of them may fire. The choice of a transition to fire is indeterminate, which is why Petri nets are useful for modeling protocols. The Petri net of Fig.2 is deterministic and can be used to model any two-phase process (e.g., the behavior of a baby: eat, sleep, eat, sleep, and so on). As with all modeling tools, unnecessary detail is suppressed.
Figure 3 gives the Petri net model of Fig. 2. Unlike the finite state machine model, there are no composite states here; the sender's state, channel state, and receiver's state are represented separately. Transitions 1 and 2 correspond to transmission of frame 0 by the sender, normally, and on a timeout respectively. Transitions 3 and 4 are analogous for frame 1. Transitions 5, 6, and 7 correspond to the loss of frame 0, an acknowledgement, and frame 1, respectively. Transitions 8 and 9 occur when a data frame with the wrong sequence number arrives at the receiver. Transitions 10 and 11 represent the arrival at the receiver of the next frame in sequence and its delivery to the network layer.

Figure 3. A Petri net model for protocol 3.


Petri nets can be used to detect protocol failures in a way similar to the use of finite state machines. For example, if some firing sequence included transition 10 twice without transition 11 intervening, the protocol would be incorrect. The concept of a deadlock in a Petri net is similar to its finite state machine counterpart.
Petri nets can be represented in convenient algebraic form resembling a grammar. Each transition contributes one rule to the grammar. Each rule specifies the input and output places of the transition. Since Fig.3 has 11 transitions, its grammar has 11 rules, numbered 1–11, each one corresponding to the transition with the same number. The grammar for the Petri net of Fig.3 is as follows:



It is interesting to note how we have managed to reduce a complex protocol to 11 simple grammar rules that can easily be manipulated by a computer program.
The current state of the Petri net is represented as an unordered collection of places, each place represented in the collection as many times as it has tokens. Any rule, all of whose left-hand side places are present can be fired, removing those places from the current state, and adding its output places to the current state. The marking of Fig.3 is ACG, (i.e., A, C, and G each have one token). Consequently, rules 2, 5, and 10 are all enabled and any of them can be applied, leading to a new state (possibly with the same marking as the original one). In contrast, rule 3 ( AD->BE ) cannot be applied because D is not marked.

Next...

Surprizzzzeeddd..!!!!




Tanggal 8: Sudah pkl 00 pagi Alit gelisah. Ih sebel banget klo gini deh! Emang mau ada apa sih ?? mana badan cape banget. tapi mata gak bisa diajak kompromi buat merem. Tapi kok tiba” badanku demam ya, didepan mata byk banget kunang” aduh kenapa nih kepala kayak mau pecah saja & niperut kok mual buanget, ??Ya ampoun BT””. Jam udah nunjukin jam 01.30 pagi. Akhirnya Alit bisa tidur deh!!



Bangoonnn, teriak suara cempreng dari tempat tidur sebelah, non mau saor gak??. Iya “ aku saur teriak Alit!! Liz sobat Alit yang satu ini emang heboh banget. Beginilah suasana asrama cewek dentist_student universitas favorit salah satu kota di Indonesia ini. Apa lg asrama ini dikenal paling hidup BGT. Saking hidupnya, namanya istilah mati kagak ada! 24 jam non-stop masih ada suara makhluk hidup ! Eit’s jangan salah ini kusus kaum hawa yang ada, adam kagak boleh la yau masuk garis batas pengaman/ alias pager besi asrama Tapi klo suster” jaga lagi patroli, kita ngibul abis pura” tidur. Aduh kok jadi nyimpang sih critanya….

Abis saur alit ngelanjutin pergi kealam mimpinya, baru aja 5 menit merem, Liz sudah teriak lagi “Alit suster patroli datang, ayo ganti bajumu kita senam pagi… spontan alit lompat dari tempat tidur& ganti baju. Sambil manyun Carmen,Liz & Lusia menunggunya di pintu kamar. Let’s go girl. We come late. Lit sudah 3 hr kau seperti tak bersemangat kenapa, critakan pada kami kali saja kami dapat memecahkan persoalanmu kata 3 sahabatnya berbarengan! I’m it’s ok friend!Aq hanya merasa bodoh tidak dapat mengerjakan soal ujianku kemarin! Oke siang nanti kau harus semangat mengerjakan. Friend’s, sesudah olahraga kita kumpul diruang belajar kita belajar bersama kata Carmen menimpali.

Sebenarnya bukan ujian itu yang dia persoalkan. Alit sendiri tidak tahu ada apa dengan dirinya!! Sejujuernya 2 hari lagi dia berulang tahun adakah sahabat” mengingat hari istimewanya?? Satu lg yang membuat dia resah selama seminggu ini, Advent cowok berdarah pilipine-manado itu yang selalu membuatnya gelisah. Alitpun tak mengerti kenapa bayangan cowok angkuh itu selalu hadir dalam sepekan ini.

Beberapa tahun lalu, saat Alit msh jd maba dia mengunjungi moeslem center . And disitu pertama kali dia melihatnya. Tak ada kesan khusus bagi Alit tentang cowok itu. Namun kejadian yang bikin keki abis, saat Alit lagi ga PD ikutan tu acara, cowok angkuh itu memperhatikannya dengan sinis, entah apa yang dipikirkannya. 2 tahun berlalu sudah tanpa terasa, tiba “ dalam suatu hari takdir mempertemukan Alit & cowok itu kembali dalam kondisi yang sama dalam sebuah organisasi mahasiswa kedokteran. Situasi jauh berbeda, tak Alit sangka mahasiswa yang menjadi ketua ikatan ini adalah dia.. sosok yang pernah dia benci. Hai Lit, suara Daimy tiba”..hai lama tak jumpa, sebenarnya aku memperhatikanmu sejak tadi Lit, kau mengenal Advent?? Advent siapa dia, Alit balik bertanya. Dia Ketua organisasi ini Lit, Ooo cowok itu bernama Advent dalam hati Alit bergumam. Sejak itu Alit mengetahui segalanya tentang advent, mulai dari dia seorang mahasiswa KU, dia sedang Co-asst & tinggal di asrama cowok KU.dll

Tanggal 10 : pukul 00.00.Byurr… Ha ha ha terdengar suara Carmen, Liz dan Lusia tertawa. Happy B-day to You alit… eits lagi ultah gak boleh marah OK!!! Uhh, sebelll… jahat banget kalian, ni liat mana kasurku basah smua lagi.. Kita minta traktiran Lit… besok buat buka& saur kita, kagak bisa klo kalian minta traktir bantuin gue jemur nih kasur sampai kering kata Alit marah!.

Jam 07 pagi alit masih ujian, hari ini dia memakai warna kesukaannya serba putih. Uhh serasa baru dilahirkan kembali suci gitu lho!! Cuma perasaan Alit saja kaliiii saking PD-nya. Entah kenapa tiba” terlintas di pikiran Alit wajah Advent. Oh my God, apa yang kupikirkan barusan, tak mungkin aq telah memikirkannya, kenapa tiba” aq ingin sekali dia mengucapkan selamat padaku. Sudahlah lit, jangan terlalu banyak bekhayal tak mungkin dia mengetahui hari istimewamu ini, kenalpun hanya sebatas tahu nama dan wajah Alit bergumam sendiri. Tp tak tau ah.. meski ragu Alit akhirnya pergi ke Base_Camp untuk melihat sosok Advent dihari istimewanya ini.

Setelah memakirkan motor di teras, alit ragu untuk masuk dalam Base_Camp! Apa alasan yang tepat ya, jika tiba” dia ditanya. Sebab tak biasanya dia datang kesitu hanya untuk sekedar main. Belum sempat menemukan alasan yang tepat dia dikejutkan suara Youngkie, Amanda, & Tidus memanggil namanya. Ya sudah kepalang basah tak bisa beralasan lain kecuali ingin mampir. Alit gelisah mencari-cari, kenapa sosok yang dia cari tak muncul” juga. Belum sempat cukp tenang. Brem brem.. suara motor berhenti didepan dan sang pengendara masuk. Oh my God hamper saja Alit salah tingkah ketika sedang mencari- cari Advent, tiba” sosok itu melaluinya tanpa perduli dengan kehadirannya. Oh, seperti tubuh yang terpelanting dari atap gedung pencakar langit dia sunguh kecewa dengan perlakuan Advent barusan. Tak sadar keadaan disekelilingnya, Alit pulang tanpa pamit dan mengakibatkan keheranan dipikiran teman”nya.

Kue tart dan macam “ pudding menjadi menu pembuka buka puasa Alit dkk kali ini. Ada Carmen, Liz, Lusia , Sandy & Bian. Tentu saja itu buatan tangan”mereka sendiri, surprise untuk sahabat tersayangnya Alit Manis. What happened Lit, you have any problem?? Please you must Story!! Timpal Carmen cewek berdarah Belanda itu. I think you falling in love. Tau apa kau, nada Alit marah karena malu. Lihat tebakanmu benar Carmen, dia memang sedang jatuh cinta kata Bian ikut andil. Apaan sih kalian!! Mereka bergurau hingga larut malam.

Tanggal 11 : Lit kamu harus mengantarkan undangan ini ke Base-Camp. Okelah, dengan sedikit malas Alit pun menuju base camp dengan motornya. Deg deg deg, belum saja mencapai pintu basecamp, advent ?? cowok itu memanggilnya, Lit apa engkau sudah membaca pesanku di white board?? Tumben sikapnya agak baik.. piker Alit. Belum jawab Alit lagi.. Oke aku pulang dulu kata advent lagi. Alit buru-buru pergi kedalam keruangan. Penasaran pesan apakah yang ditulisnya. Oh My God.. Alit terpekik sesaat ya ampun Advent memberi ucapan selamat ulang tahun padanya. Alit hamper gak prcaya dia ingat ultahku.. Hari itu alit bahagia sekali..

Tidak terasa setengah tahun berlalu, kepengurusan hamper berakhir. waktunya perpisahan, Advent sibuk dengan kegiatan organisasi lainnya dan tugas-tugas akhirnya. Sedang Alit sendiri harus pergi dari kota tempatnya kuliah menuju ke kota lain untuk melaksanakan tugas kuliah selama 4 bulan. Tidak ada kabar-kabari tentang Advent, kabar pertama yang Alit terima dari Liz dia menjadi Koordinator organisasi penting antar Mahasiswa Kedokteran se Propinsi. Kabar kedua yang diterima lagi dia sudah lulus dengan menyandang cumlaude. Yang itu dia memberi kabar sendiri pada Alit lewat ponselnya. Congratulation from him..



Next...

Signalling Systems

This section discusses the nervous system of the network: the signaling system. A great deal of information needs to be passed back and forth between the network elements in the completion of a call and also in the servicing of specialized features. Four main types of signals handle this passing of information:
• Supervisory signals— Supervisory signals handle the on-hook/off-hook condition. For instance, when you lift a telephone handset (that is, go off-hook), a signal tells the local exchange that you want a dial tone, and if you exist in the database as an authenticated user, you are then delivered that service; when you hang up (that is, go back on-hook), you send a notice that says you want to remove the service. A network is always monitoring for these supervisory signals to determine when someone needs to activate or deactivate service.
• Address signals— Address signals have to do with the number dialed, which essentially consists of country codes, city codes, area codes, prefixes, and the subscriber number. This string of digits, which we refer to as the telephone number, is, in effect, a routing instruction to the network hierarchy.
• Information signals— Information signals are associated with activating and delivering various enhanced features. For instance, a call-waiting tone is an information signal, and pressing *72 on your phone might send an information signal that tells your local exchange to forward your calls.
• Alerting signals— Alerting signals are the ringing tones, the busy tones, and any specific busy alerts that are used to indicate network congestion or unavailability.
Signaling takes place in two key parts of the network: in the access network, where it's called loop signaling, and in the core, where it's called interoffice signaling (see Figure 1).



Figure 1. Customer loop and interoffice signaling


With analog loop signaling, two types of starts exist:
• Ground start— Ground start means that when you seize that line, it's immediately grounded so that no other call can potentially conflict with it. Ground start is used with a contentious system, perhaps a PBX at a corporate enterprise, to avoid collisions. For example, say you seize a trunk and place a call, and now you're in the ringing state. There are short periods of silence between ringing tones. The local exchange could mistake one of these periods of silence to mean that that trunk is available and try to send a call in over that same trunk that you're trying to place a call out over; this would cause a collision (referred to as glare). Consequently, when you're dealing with systems and contention for the resource, grounding the trunk up front is the most efficient procedure.
• Loop start— Pay telephones and residential phones use loop start, which means that the circuit is grounded when the connection is completed.
There are various start standards for digital subscriber signaling, and they are defined in accordance with the service being provided.
Interoffice signaling has been through several generations of signaling approaches. In the first generation, called per-trunk signaling, the complete path—all the way to the destination point—is set up in order to just carry the signaling information in the first place (see Figure 2). This method uses trunks very inefficiently; trunks may be put into place to carry 20 or 30 ringing tones, but if nobody is on the other end to take that call, the network trunk is being used but not generating any revenue. Also, when a call is initiated and begins to progress, you can no longer send any other signaling information over that trunk; being able to pass a call-waiting tone, for instance, would not be feasible.

Figure 2. Per-trunk signaling


We have moved away from the per-trunk signaling environment to what we use today—common-channel signaling (see Figure 3). You can think of common-channel signaling as being a separate subnetwork over which the signaling message flows between intelligent networking components that assist in the call completion and assist in the delivery of the service logic needed to deliver the requested feature. Today, we predominantly use the ITU-T standard for common-channel signaling: SS7.

Figure 3. Common-channel signaling


SS7 Architecture
SS7 is critical to the functioning and operation of the modern network. With SS7, a packet data network overlays and controls the operation of the underlying voice networks; signaling information is carried on an entirely different path than voice and data traffic. Signaling doesn't take a great deal of time, so we can multiplex many signaling messages over one channel, and that's why the signaling system is a packet network. The signaling system takes advantage of the efficiencies of statistical multiplexing for what is essentially bursty data. The SS7 signaling data link is a full-duplex digital transmission channel that operates at either 56Kbps or 64Kbps, depending on the standards under which the network is operating (for example, T-carrier and J-carrier operate at 56Kbps, E-carrier operates at 64Kbps).
SS7 is an entire architecture that performs out-of-band signaling (that is, signaling in which the conversation and the signaling take place over different paths) in support of the information-exchange functions that are necessary in the PSTN, such as call establishment, billing, and routing. Database access messages convey information between toll centers and centralized databases to permit real-time access to billing-related information and other services. The SS7 architecture defines the procedures for the setup, ongoing management, and clearing of a call, and it allows you to pass along customer-related information (for example, the identity of the caller, the primary carrier chosen) that helps in routing calls. The efficiency of the network also results in faster call setup times and provides for more efficient use of the circuits when carrying the voice or data traffic. In addition, SS7 supports services that require signaling during a call as it is occurring—not in the same band as the conversation.
SS7 permits the telephone company to offer one database to several switches, thereby freeing up switch capacity for other functions, and this is what makes SS7 the foundation for INs and advanced intelligent networks (AINs). It is also the foundation for network interconnection and enhanced services. Without SS7, we would not be able to enjoy the level of interoperability we have today. SS7 is also a key to the development of new generations of services on the Internet, particularly those that support traditional telephony services. To be able to accommodate features such as call forwarding, call waiting, and conference calling, you must be able to tap into the service logic that delivers those features. Until quite recently, the Internet has not been able to do this, but the year 2000 saw the introduction of SS7 gateways, which allow an interface between circuit-switched networks (with their powerful SS7 infrastructure) and the emerging packet-switched networks that need to be capable of handling the more traditional type of voice communications on a more cost-effective basis.
As Figure 4 shows, there are the three prerequisite components in the SS7 network: service switching points (SSPs), service control points (SCPs), and signal transfer points (STPs).

Figure 4. An SS7 network


SSPs
SSPs are the switches that originate and terminate calls. They receive signals from the CPE and perform call processing on behalf of a user. The user, by dialing particular digits, triggers the network to request certain services. For instance, if you preface a number with a toll-free prefix, that toll-free arrangement triggers the local exchange, or SSP, to initiate a database lookup to determine the physical address of that toll-free number (that is, where it resides in the network). The SSP reaches into the network to find the database that can translate the toll-free number into a physical address in order to then complete the toll-free call. The SSP does this by interacting with a device called the SCP, which is discussed shortly.
SSPs are typically implemented at local exchanges, access tandem offices, or toll centers that contain the network-signaling protocols. The SSP serves as the source and destination point for the SS7 messages.

SCPs
The second key component of SS7 is SCP. This is the network element that interfaces with the SSP as well as the STP. Most importantly, the SCP is the network element that contains the network configuration and call-completion database; in other words, it contains the service logic to act on the types of calls and features the users are requesting. SCPs are centralized nodes that contain service logic—basically software and databases—for the management of the call. They provide functions such as digit translation, call routing, and verification of credit cards. The SCPs receive traffic from the SSP via the STP and return responses, based on that query, via the STP.

STPs
The STP is responsible for translating the SS7 messages and then routing those messages between the appropriate network nodes and databases. Notice in Figure 4 that the SCPs and the STPs are both redundant, and that the links running between them are also redundant.

SS7 and the Internet
If a network loses its signaling system, it loses the capability to complete calls, as well as to do any form of billing or passing along of management information. This makes SS7 critical. The SS7 signaling data link, as mentioned earlier in the chapter, is a full-duplex digital transmission channel that operates at either 56Kbps or 64Kbps. A variety of other SS7 links are defined as well, and each has specific uses within the signaling network:
• A (access) links— An A link interconnects an STP with either an SSP or an SCP. The SSP and SCP, collectively, are referred to as the signaling endpoints. A message sent to and from the SSPs or SCPs first goes to its home STP, which, in turn, processes or routes the message.
• B (bridge) links, D (diagonal) links, and B/D links— A B link connects an STP to another STP. Typically, a quad of B links interconnect peer (or primary) STPs (for example, the STPs from one network to the STPs of another network). The distinction between a B link and a D link is rather arbitrary, and such links may be referred to as B/D links.
• C (cross) links— C links interconnect mated STPs.
• E (extended) links— E links provide enhanced reliability by providing a set of links from the SSP to a second STP pair.
• F (fully associated) links— F links are links that directly connect to signaling endpoints.


Next...

The PSTN Infrastructure

The traditional PSTN infrastructure was specifically designed to support only voice communications. At the time this infrastructure was being designed, we had no notion of data communications. Initially the traffic type the PSTN was designed to support was continuous real-time voice.
Another variable that's important to the design of the PSTN has to do with the length of calls. Most voice calls are quite short, so the circuit switches in the PSTN are engineered for call durations of three minutes or less. The average Internet session, on the other hand, lasts around an hour. This means that increased Internet access through the PSTN has, in some locales, put a strain on the local exchanges. If a circuit switch is blocked because it is carrying a long Internet session, people may not be able to get a dial tone. There are several solutions to this problem. For example, we can apply intelligence in front of some exchanges so that calls destined for ISPs can be diverted over a packet-switched network to the ISP rather than being completed on a circuit-switched basis through the local exchange.



Yet another variable that's important to the design of the PSTN has to do with what it was designed to support. The capacities of the channels in the PSTN are of the narrowband generation—they are based on 64Kbps channels. The worldwide infrastructure to accommodate voice communications evolved to include a series of circuit switches. Different switches are used based on the locations to which they're connecting. The switches have a high degree of intelligence built into them, both for establishing the communications channels and for delivering the service logic to activate a growing array of features. In the traditional framework, the monolithic switches in the network had all the smarts. The switch manufacturer and the carrier worked together very closely, and the carrier was not able to introduce new features and services into a particular area until a software release was available for the switch platform through which the neighborhood was being serviced. Thus, carriers were often unable to roll out new services and features because they hadn't yet received the new software releases from the switch manufacturers. Over time, we have separated the functions of switching and connection establishment from the functions involved in the intelligence that enables various services and features to be activated.
The traditional PSTN is associated with highly developed, although not necessarily integrated, operational support systems (such as billing systems, provisioning systems, network management systems, customer contact systems, and security systems). These systems have very well-developed business processes and techniques for managing their environments. But the various systems' databases cannot yet all speak to one another to give one comprehensive view. (But at least those systems exist, unlike in the public Internet, where the operational support systems are only now beginning to emerge to help manage that environment.)
The backbone of the traditional PSTN was largely based on a generation that we call the Plesiochronous Digital Hierarchy (PDH), which includes the T-carrier, E-carrier, and J-carrier standards. The local loop of the PSTN was provisioned as a twisted-copper-pair analog subscriber line.
Service Providers
Many abbreviations and acronyms are used to define the various players and the parts of the network in which they play. Some telcos can and do fulfill more than one of these functions; the extent to which they can or do fulfill more than one of these functions partly depends on the policy, regulatory, and licensing conditions that prevail in different countries. The following terms are largely used in the United States, but they are important to the discussion in this chapter because they illustrate the functions service providers are addressing:
• PTO— PTO stands for public telecommunications operator, which is the name for an incumbent carrier in places other than the United States.
• VAN— VAN stands for value-added network provider. This term originated around 1970 and was applied to companies that were competing to provide telecommunications services, specifically with offerings focused on data communications and data networking. VANs provided more than a simple pipe from Point A to Point B. They provided some additional intelligence in the network, to, for example, perform error detection and correction, or to convert protocols or languages that different computers speak so that you could have interoperability across the network.
• LEC— In the local environment we use the acronym LEC for local exchange carrier. There was originally no competition among LECs, but as soon as competition in the local loop picked up, LECs were segmented into ILECs, CLECs, and DCLECs.
• ILEC— The ILEC is the incumbent local exchange carrier, the original common carrier that either once had, or in some countries still has, monopoly rights in the local loop. For most residents in the United States, this would be one of the four "baby Bells"—Qwest Communications International, SBC Communications, BellSouth Corporation, and Verizon Communications.
• CLEC— The CLEC is the competitive local exchange carrier. CLECs came about as a result of the Telecommunications Act of 1996, which opened up competition in the local loop. The CLEC is the competitor to the ILEC. Although the decline of the telecommunications economy in 2000 and 2001 forced several CLECs out of business, there are still some CLECs in the United States, and they currently focus on delivering dial tone to business customers.
• DCLEC (or DLEC)— DCLEC stands for data competitive local exchange carrier. The DCLEC is a company that is specifically focused on supporting data services (for example, providers that offer DSL services to end users).
• ELEC— ELEC stands for Ethernet local exchange carrier. The ELEC specializes in providing Ethernet solutions in the local loop and metro area.
• IXC— The interexchange carrier (IXC) is the carrier for long-distance and international communications. AT&T Corporation, WorldCom, Sprint, Qwest, and Verizon are the primary IXCs in the United States. Unless certain stringent requirements imposed by the Federal Communications Commission are met, an IXC cannot offer long-distance services in the areas where it is also the ILEC.
• SP— Because so many lines are being blurred today by bundled services and bundled territories of operation, the basic term service provider (SP) is commonly used to refer generically to providers of different types of services.

Network Access
Figure 1 is a simple diagram of network access. On the left-hand side is the customer environment, which includes residences (single-line instruments being served by an access line) and business premises (with onsite telephone systems such as private branch exchange [PBXs] or key telephone systems—smaller site systems for installations where there are 50 or fewer employees). Those in the customer environment are connected to the PSTN via access lines. The access network, or the local loop we so often talk about, includes whatever equipment resides at the customer premise (that is, the customer premises equipment [CPE]), the access line leading to the local exchange, the components at the local exchange on which those access lines terminate (that is, the distribution cross-connects), and the logic used to help control the flow of traffic over the access lines. In the United States, competition is allowed in the local loop, and a myriad of players are interested in owning the local loop (for example, Internet service providers [ISPs], wireless operators, cable TV companies, power utilities). However, worldwide, the incumbent local providers continue to dominate the local loop, and, as usual, politics and economics are principal factors in delaying the mass deployment of high-speed residential access.

Figure 1 Network access


The local exchange, in the center of Figure 1, is the backbone, or the core, of the network. From the local exchange, we can establish connections into the other providers, such as IXCs for long distance, international carriers for overseas calls, cellular providers, and ISPs.
The underlying network access facilities can be either analog or digital loops, and they connect the exchanges to the customer premises. At the customer premises there are the network interfaces, CPE, premises distribution systems where wiring is cross-connected, and network interfaces. The equipment for providing switch access services includes line-termination cards, carrier and multiplexer equipment, and local exchange switching capabilities that support addressing, supervisory alerting, call progress, and other signaling functions.

Access Services
The main categories of access services are trunks, business lines for key telephone systems, centrex service, leased lines, and residential subscriber lines.
Trunks are used to provide connections into the PBX environment. There are three subcategories of trunks:
• Two-way local exchange trunks— On these trunks, traffic flows in both the incoming and outgoing directions.
• DID trunks— Direct inward dialing (DID) trunks are designed for only incoming calls. A benefit of DID trunks is that they enable the dialed number to ring directly on a user's phone rather than having to go through a centralized attendant. If the population knows whom they want to call directly, and if you want to ease the process of connecting the call, this can be a very useful feature. Another benefit of DID trunks is that they make it seem like a private line goes directly to the user, but with DID you can support perhaps 100 different numbers with a group of only 25 to 35 trunks (traffic engineering is used to determine the proper number of trunks).
• DOD trunks— Direct outward dialing (DOD) trunks are used specifically for outgoing calls. DOD trunks are used when you dial an access code such as the number 9 or the number 8 to get an outside-line dial tone before you can dial the actual number that you want to reach.
To service the key telephone systems, business lines connect the network termination at the user to the local exchange. Users that want to use the local exchange as if it were their PBX rent centrex trunks on a monthly basis. Large companies often access the network via leased lines, which can be a very expensive solution, and home users access the network via residential subscriber lines.
Access lines can either be in analog facilities or they can be digital carrier services. Analog transmission is often called plain old telephone service (POTS for short). Three main types of digital services are offered by using twisted-pair cable. The first type of digital services involves T-1 access (at 1.5Mbps), E-1 access (at 2.048Mbps), and J-1 access (at 1.544Mbps). The second type of digital services is narrowband ISDN (N-ISDN) services, including Basic Rate Interface (BRI) for residences and small businesses and Primary Rate Interface (PRI) for larger businesses. The third type of digital services is the xDSL subscriber lines and high-speed digital subscriber lines that enable the all-important applications of Internet access and multimedia exploration.

Transport Services
Transport services are the network switching, transmission, and related services that support information transfer between the originating and terminating access facilities. The underlying facilities include local exchanges and tandem switches, toll and transit switches, international gateways, and interoffice transmission equipment. Transport services include switched services, nonswitched services, and virtual private networks (VPNs).

Switched Services
There are two main types of switched services: public and private.
Switched public services include local calling, long-distance calling, toll-free calling, international calling, directory assistance, operator assistance, and emergency services.
Switched private services can be switchable either because they are deployed within the CPE or because they are deployed on a carrier basis. With CPE-based services, you can add capabilities to the telephone systems onsite in the PBXs—a feature called electronic tandem networking. For example, you can use electronic tandem networking to gain some flexibility in routing around congestion points: If the preferred leased line from Switch A to Switch B is occupied or not available, the switch can decide how to reroute that traffic to still reach Switch B, but through a different series of leased lines. However, because leased lines (also referred to as tie trunks) are mileage sensitive and dedicated to individual customers, they are very expensive; thus, not much private voice networking is done over tie trunks because there are several more attractive solutions, such as VPNs, which are discussed shortly.
With carrier-based switched private services, a centrex customer could partition and implement extensions across multiple local exchanges and in this way be able to switch traffic between those locations.

Nonswitched Services
Nonswitched services include leased lines, foreign exchange (FX) lines, and off-premises exchanges (OPXs). With leased lines, two locations or two devices are always on, using the same transmission path.
FX lines allow you to make a toll call appear to be a local call. For example, you might have a dedicated leased line that runs from your customer premise to a local exchange in a distant area where you call large numbers of customers. When anyone behind your PBX dials a number associated with that foreign local exchange, the PBX automatically selects the FX line. The dial tone the caller receives is actually coming from the distant local exchange, and the call proceeds as if it were a local call. The tradeoff with FX lines is that although you are not charged per call for your long-distance calls to the specified exchange, you pay a flat monthly fee for the leased line and you have to apply some traffic engineering to ensure that you're not making people wait for the FX line to become available. So with FX lines, you need to find the right balance point between reducing costs and ensuring a high level of service.
OPXs are used in distributed environments, such as a city government. Say that the city government has public works stations, libraries, fire stations, and parks and recreation facilities that are too far from the PBX to be served by the normal cabling. The city uses an OPX setup: It leases a circuit from the PBX to the off-premise location and ties it in as if it were part of that PBX. City government employees can then call one another, using their normal extension plan, their call accounting information can be accumulated so that cost allocations can be performed, and the employees can have access to the full suite of features that a business PBX offers.

VPNs
Although you might think that VPNs are related to the Internet or to Internet Protocol (IP) and are a somewhat new development, they actually originated in the circuit-switched network environment, with AT&T's software-defined network (SDN) in the early 1980s. A VPN is a concept, not a technology platform or a set of networking techniques. A VPN defines a network in which customer traffic is isolated over shared-service provider facilities, so as more customers share the same facilities, their costs go down. The purpose of a VPN, then, is to reduce the high cost of leased lines, while still providing high quality of service and guaranteeing that private traffic has capacity between locations. Figure 2 shows an example of a VPN.

Figure 2. An example of a VPN


The underlying facilities of a VPN include the carrier public network, augmented by network control points and service management systems. Under computer control, the traffic is then routed through the public network in a manner that makes the VPN service seem like a facilities-based private network. Access to the VPN can occur via dedicated access, leased lines, or carrier-switched access, using either an analog or a digital carrier.
The network control point represents a centralized database that stores a subscriber's unique VPN information. The network control point screens every call and then applies call processing in accordance with the customer-defined requirements. A common-channel signaling network connects the various network elements so that they can exchange information with each other in real-time.
A service management system is used to build and maintain the VPN database. It allows customers to program specific functions to accommodate their particular business applications. It transmits information to the network control points, with important instructions on a customer-by-customer basis. Thus, VPNs introduce to the realm of the PSTN a lower-cost alternative to building a private voice network.

PSTN Architecture
The PSTN includes a number of transmission links and nodes. There are basically four types of nodes: CPE nodes, switching nodes, transmission nodes, and service nodes.

CPE Nodes
CPE nodes generally refer to the equipment that's located at the customer site. The main function of CPE nodes is to transmit and receive user information. The other key function is to exchange control information with the network. In the traditional realm, this equipment includes PBXs, key telephone systems, and single-line telephones.

Switching Nodes
Switching nodes interconnect transmission facilities at various locations and route traffic through a network. They set up the circuit connections for a signal path, based on the number dialed. To facilitate this type of switching, the ITU standardized a worldwide numbering plan (based on ITU E.164) that essentially acts as the routing instructions for how to complete a call through the PSTN. The switching nodes include the local exchanges, tandem exchanges (for routing calls between local exchanges within a city), toll offices (for routing calls to or from other cities), and international gateways (for routing calls to or from other countries). Primary network intelligence is contained in the Class 4 switches (that is, toll offices switches) and Class 5 switches (that is, local exchange switches). The Class 4 toll switches provide long-distance switching and network features, and the Class 5 switches provide the local switching and telephony features that subscribers subscribe to. Figure 3 shows where the types of telephone exchanges are located.

Figure 3. Types of telephone exchanges


The Local Exchange
The local exchange (also called the Class 5 office or central office) is where communications common carriers terminate customer lines and locate the switching equipment that interconnects those lines. This class office represents the local network. Every subscriber line location in a local exchange is assigned a number, generally seven or eight digits. The first three (or four) digits represent the exchange and identify the local exchange switch that serves a particular telephone. The last four digits identify the individual line number, which is a circuit that is physically connected from the local exchange to the subscriber. The traditional local exchange switch can handle one or more exchanges, with each exchange capable of handling up to 10,000 subscriber lines, numbered 0000 to 9999. In large metropolitan areas, it is common to find one local exchange building housing more than one local exchange switch and for each switch to handle five or more exchanges. These offices are sometimes referred to as multi-entity buildings.

The Tandem Office
The tandem office, or junction network, is an exchange that is used primarily as a switching point for traffic between local exchanges in a metropolitan area. It is an office that is used to interconnect the local end offices over tandem trunks in a densely settled exchange area where it is not economical for a telephone company to provide direct interconnection between all end offices. The tandem office completes all calls between the end offices but is not directly connected to subscribers.

The Toll Office
The toll office (also called the trunk exchange or transit switch) is a telephone company switching center where channels and toll message circuits terminate—in other words, where national long-distance connections are made. This is usually one particular exchange in a city, but larger cities may have several exchanges where toll message circuits terminate.

The International Gateway
An international gateway is the point to and from which international services are available in each country. Protocol conversion may take place in the gateway; in ITU terminology, this is called a centre de transit (CT). C1 and C2 international exchanges connect only international circuits. CT2 exchanges switch traffic between regional groups of countries, and CT1 exchanges switch traffic between continents. CT3 exchanges connect switch traffic between the national PSTN and the international gateway.

Transmission Nodes
Transmission nodes are part of the transport infrastructure, and they provide communication paths that carry user traffic and network control information between the nodes in a network. The transmission nodes include the transmission media discussed in Chapter 3, as well as transport equipment, including amplifiers and/or repeaters, multiplexers, digital cross-connects, and digital loop carriers.

Service Nodes
Service nodes handle signaling, which is the transmission of information to control the setup, holding, charging, and releasing of connections, as well as the transmission of information to control network operations and billing. A very important area related to service nodes is the ITU standard specification Signaling System 7 (SS7), which is covered later in this chapter.



Next...

Find Maps


Free Blogger Templates by Isnaini Dot Com and Ford Cars. Powered by Blogger